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Introduction

We introduce the time dependent Schrödinger equation in a semiclassical scaling

iε
dψ

dt
=Hψ, (1)

where ψ = ψ(x, t) is the wave function, t ∈ R is the time and x ∈ Rd the spatial
variable. Further is ε > 0 a semiclassical parameter, representing the scaled
Planck constant h̵, i.e. it is a ratio between h̵ and a characteristic action. H is
the Hamiltonian of the system. We will consider a Hamiltonian which is of the
form

Hψ(x, t) = −
ε2

2
∆ψ(x, t) + V (x)ψ(x, t),

where −∆ is the Laplacian with respect to the spatial variable x and V is a
real-valued potential. ε2 represents the mass ratio of electrons and nuclei in
a molecule [LL, p.2]. The aim of this thesis is to present an algorithm which
approximates a solution to (1) for a small parameter ε > 0.
Finding a good numerical approximation for this partial di�erential equation is
in general very di�cult, as the problem is high-dimensional and the solution is
highly oscillatory in space and time [LL, p.2].

A promising ansatz to �nd a good approximation uses Gaussian wave pack-
ets. This method is called variational multi-con�gurational Gaussians (vMCG)
and �nds applications in quantum chemistry. It was �rst proposed by Heller
in 1975. He considered multi-dimensional Gaussians and derived equations of
motions for their parameters [Hel75]. This idea was also extended to linear
combinations of Gaussians, for example in [RPS+15].

The purpose of this thesis is to introduce a new way of implementing the vMCG
method. In chapter 1 we formulate the problem, introduce basic notation, ex-
plain the idea for an algorithm and derive equations of motion for the parameters
of the Gaussians. Most of the presented techniques rely on [Lub08].
Chapter 2 introduces Hagedorn functions and Hagedorn wave packets, which
were developed by George Hagedorn in [Hag81], [Hag85] and [Hag98]. These
functions allow us to calculate high-dimensional integrals of a Gaussian times a
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polynomial. This is crucial for the algorithm, because we will apply a modi�ed
Gram-Schmidt method to functions in L2(Rd) and need their inner products.

In chapter 3 the algorithm and how it is implemented will be explained in detail.
The �nal chapter 4 presents various numerical experiments. We consider one
and multi-dimensional quantum systems with di�erent approaches. Finally the
results will be evaluated.
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Chapter 1

Problem formulation

1.1 Abstract formulation

For an abstract formulation of the problem consider a complex Hilbert space H
with the inner product < ⋅, ⋅ >. As in 1 we consider a self-adjoint Hamiltonian
H with H = −∆ + V , where V is a real-valued potential. Let now M be a
submanifold of H. For u ∈ M let TuM be the tangent space at the point
u, which consists of the derivatives of all di�erentiable paths on M passing
through u. The tangent space TuM can be interpreted as a linear approximation
of the submanifold M at the point u. In this thesis, our goal is to �nd an
approximation u(t) ∈ M of the wave function ψ(t). The approximation u(t)
is determined by the condition that for every time t, its time derivative ∂u/∂t,
which lies in TuM, be such that the following condition holds:

∂tu(t) ∈ TuM s.t. ⟨v∣∂tu(t) −
1

ih̵
Hu(t)⟩ = 0 ∀v ∈ TuM. (1.1)

This variational formulation of the problem is called the Dirac�Frenkel Time-
Dependent Variational Principle. This condition can also be seen as a Galerkin
condition on the approximation space TuM. More details can be found in
[Lub08, p. 19�].
Taking the real part of (1.1), we get a minimum condition for the linear approx-
imation problem

∂u

∂t
is choosen as w ∈ TuM s.t. ∥w −

1

ih̵
Hu∥ is minimal. (1.2)

This formulation of the problem leads to the interpretation of (1.2) as a orthog-
onal projection onto the tangent space TuM [Lub08, p.20].
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1.1.1 Application to Gaussian wave packets

For the approximation with Gaussian wave packets we choose an approximation
u(⋅, t) = u(t) to the solution ψ(t) in the following manifold:

M ∶=

⎧⎪⎪
⎨
⎪⎪⎩

u ∈ L2
(Rd)

RRRRRRRRRRR

u(x) =
m

∑
j=1

aj exp(
i

ε
(

1

2
(x − qj)

TCj(x − qj) + p
T
j (x − qj) + ζj)) ,

aj ∈ C, qj , pj ∈ Rd,Cj = CTj ∈ Cd×d, Im(Cj) is positiv de�nit, ζj ∈ C
⎫⎪⎪
⎬
⎪⎪⎭

.

(1.3)

All the appearing parameters y ∶= (aj , qj , pj ,Cj , ζj)j and u(x) depend on the
time t, therefore one should write y(t) = (aj(t), qj(t), pj(t),Cj(t), ζj(t))j and
u(x, t). For sake of readiness, we omit it. The ε is a semiclassical parameter.
This application to Gaussian wave packets can be found in [LL, p. 12�], with
the di�erence that they only use one Gaussian instead of linear combinations.
For simplicity we will assume aj = 1 for all times and for all j, because its use
is a normation of the sum of the Gaussians. u can also be normalized by the
parameters ζj and we hope that the oscillations of the ζj will not be as high as
the oscillations of the aj .

Tangent space

Assuming an approximation u as in de�nition (1.3) we still need to know how
the tangent space TuM looks like. The following theorem holds:

Theorem 1.1

For u = ∑
m
j=1 gj(x) ∈ M, where gj is a Gaussian of the form

gj(x) = exp(
i

ε
(

1

2
(x − qj)

TCj(x − qj) + p
T
j (x − qj) + ζj))

as in de�nition (1.3), the tangent space equals

TuM=

⎧⎪⎪
⎨
⎪⎪⎩

v
RRRRRRRRRRR

v =
m

∑
j=1

ϕjgj , ϕj is a complex d-variate polynomial of deg≤2

⎫⎪⎪
⎬
⎪⎪⎭

.

(1.4)

Proof.
In section 1.1 we de�ned TuM in the way that it consists the derivatives of all
di�erentiable paths onM passing through u. A direct calculation shows us that
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an arbitrary element of the tangent space v ∈ TuM has the form

v(x) =
m

∑
j=1

i

ε
(−q̇j

TCj(x − qj) +
1

2
(x − qj)

T Ċj(x − qj) + ṗj(x − qj) − p
T
j q̇j + ζ̇j)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ϕj

gj(x)

=
m

∑
j=1

ϕjgj ,

with arbitrary q̇j , ṗj ∈ Rd, Ċj = ĊTj ∈ Cdxd, ζ̇j ∈ C. Every d-variate complex
polynomial of degree ≤ 2 can be written in the form of a ϕj . Thus we have that
each element v in the tangent space has the stated form.

The statement and the proof can be found in [LL, p.13f] lemma 3.1, with the
di�erence that there u is not a linear combination but one single Gaussian.

Position and momentum averages

It is worth to have a closer look on what the parameters p and q stand for.
Assume m = 1, take a u ∈ M of unit norm and separate C and ζ in real- and
imaginary part, i.e. C = A + iB and ζ = γ + iδ. An easy calculation shows that

u(x)u(x) = exp(−
1

ε
((x − q)TB(x − q) + 2δ))

= exp(
−2δ

ε
) exp(−

1

2
((x − q)T

2B

ε
(x − q))) . (1.5)

As u(x) is of unit norm, (1.5) is a density function of a d-dimensional normal
distribution with expectation value q and covariance matrix C = (2B/ε)−1. As
by assumption B is a real positive de�nite symmetric matrix, it is well known
that it holds

⟨u∣xiu⟩ = qi ⇒ ⟨u∣xu⟩ = q.

For the statement of the expectation value of a d-dimensional normal distribu-
tion see for example theorem 15.53 in [Kle06, p.312]. Therefore we saw that the
position average equals the parameter q.
In the same we we calcluate

⟨u∣(−iε∇xu)i⟩ = ⟨u∣(C(x − q) + p)iu⟩ = ∫
Rd

d

∑
l=1
Cil(xl − ql) + pi)u(x) dx

=
d

∑
l=1
Cil ∫

Rd
xl∣u(x)∣

2dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ql

−
d

∑
l=1
Cilql ∫

Rd
∣u(x)∣2dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

+pi ∫
Rd

∣u(x)∣2dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= pi.

Therefore the momentum average ⟨u∣ − iε∇xu⟩ equals the parameter p.
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Energy conservation

The presented variational Gaussian wave packets are energy and norm preserv-
ing as proved in the following theorem:

Theorem 1.2

The time-dependent variational approximation (1.1) is norm and energy
preserving, i.e. for a �xed time t0 it holds

⟨u(t0) ∣ Hu(t0)⟩ = ⟨u(t) ∣ Hu(t)⟩ and ∥u(t0)∥ = ∥u(t)∥ (1.6)

for all t ∈ R.

This theorem and a proof can be found in [LL, p.14].

Proof.
Recall that the approximation u(t) is determined by the condition that ∂tu(t) ∈
TuM. Then we calculate

d

dt
⟨u(t) ∣ Hu(t)⟩ = ⟨∂tu(t) ∣ Hu(t)⟩ + ⟨u(t) ∣ H∂tu(t)⟩

= ⟨∂tu(t) ∣ Hu(t)⟩ + ⟨Hu(t) ∣ ∂tu(t)⟩

= ⟨∂tu(t) ∣ Hu(t)⟩ + ⟨∂tu(t) ∣ Hu(t)⟩

= 2 Re⟨∂tu(t) ∣ Hu(t)⟩

= 2 Re⟨∂tu(t) ∣ ih̵∂tu(t)⟩ = 0,

where the second equality holds as H is a self-adjoint operator. Thus we have
the energy conservation over time. For the norm preservation we note that
u(t) ∈ TuM, therefore we can insert it in (1.1) and get

d

dt
∥u(t)∥

2
= ⟨u(t) ∣ ∂tu(t)⟩ + ⟨∂tu(t) ∣ u(t)⟩

= 2 Re⟨u(t) ∣ ∂tu(t)⟩

= 2 Re⟨u(t) ∣
1

ih̵
Hu(t)⟩ = 0.

1.1.2 Di�erent types of Gaussians

Due to Heller we de�ne three di�erent types of Gaussian functions. The fol-
lowing de�nitions can be found in [RPS+15, p.5f]. The type of a Gaussian is
determined by the matrix C. Later we will see in numerical experiments that the
stability of the propagation depends on which of the following types is choosen.
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Frozen Gaussians

We call a Gaussian frozen, if the diagonal elements of C are kept �xed during
the whole propagation. These type of Gaussian is usually used for quantum and
semiclassical dynamics simulations. Recent studies have found that the choice
of C is crucial for stable dynamics [RPS+15, p.5].

Separable Gaussians

We call a Gaussian separable, if the C is a diagonal matrix, but its entries may
change during the propagation.

Thawed Gaussians

We call a Gaussian thawed, if the matrix C contains diagonal and o�-diagonal
elements. This allows coupling between di�erent modes and is the most general
choice we can have in these kind of approximations.

The original idea of Heller was that a single thawed Gaussian is not �exible
enough to describe a full quantum system. Therefore he introduced linear com-
binations of frozen Gaussians (with constant widths) in [Hel81]. There has been
done much work with this kind of approximations, see for example in [RPS+15,
p.2f].

1.2 Idea of the algorithm

In this section we will present an existing method of solving (1.8) and the
problems with this, as it relies on the ansatz of the normal equation. Further we
explain the idea for an algorithm which is based on an orthogonalization that
avoids the normal equation.

1.2.1 Current methods

Let λjα be an arbitrary parameter of the j-th Gaussian of u. In [RPS+15] they
apply the Dirac-Frenkel Variational Principle (1.1) with v = λjαaj

∂gj
∂λjα

. We get

0 =⟨λjαaj
∂gj

∂λjα
∣H − i

∂

∂t
∣u(t)⟩

=⟨λjαaj
∂gj

∂λjα
∣Hu(t)⟩ − ⟨λjαaj

∂gj

∂λjα
∣iu̇(t)⟩,
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what is equivalent to

⇔⟨λjαaj
∂gj

∂λjα
∣iu̇(t)⟩ = ⟨λjαaj

∂gj

∂λjα
∣Hu(t)⟩

⇔− i⟨
∂gj

∂λjα
∣iu̇(t)⟩ = −i⟨

∂gj

∂λjα
∣Hu(t)⟩

⇔⟨i
∂gj

∂λjα
´¹¹¹¹¹¹¸¹¹¹¹¹¶
=Aj

∣ iu̇(t)
²
=Aẏ

⟩ = ⟨i
∂gj

∂λjα
´¹¹¹¹¹¹¸¹¹¹¹¹¶
=Aj

∣Hu(t)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=b

⟩,

if Aj is the j-th column of A. Writing this in matrix notation and de�ning the
multiplication of L2-functions as the inner product of these functions we get
ATAẏ = AT b. Therefore [RPS+15] gets ẏ via solving the normal equations. If
the matrix A is ill-conditioned, then we expect the problem to be even worse
conditioned, as it holds κ(ATA) = κ(A)2, see for example in [DH08, p.75]. The
aim of this thesis is to present and analyse an algorithm which avoids the normal
equation.

1.2.2 Orthogonalization

Let us now de�ne a function Λ which maps the parameters y to the correspond-
ing L2-function de�ned as in (1.3). With this de�nition we can write u = Λ(y)
and u̇ = Λ′(y)ẏ. Further we de�ne A ∶= Λ′(y) and b ∶= 1

iε
HΛ(y). With this, the

Dirac-Frenkel Variational Principle (1.1) changes to

⟨v∣Λ′
(y)ẏ −

1

iε
HΛ(y)⟩ = ⟨v∣Aẏ − b⟩ = 0 ∀v ∈ TuM. (1.7)

The minimization condition (1.2) reads as

∥Λ′
(y)ẏ −

1

iε
HΛ(y)∥ = ∥Aẏ − b∥ = min!. (1.8)

Instead of using the normal equation, we made an orthonormalization of the
matrix A. First assume that this A is the matrix de�ned as above. Later we
will use a slightly di�erent matrix, which we will call X, to make the whole
problem a real valued one. This will be speci�ed later, for now assume we have
a matrix A whose columns are L2-functions.

Modi�ed Gram-Schmidt method

The orthonormalization is obtained by a modi�ed Gram-Schmidt method. One
can �nd the de�nition of the algorithm and a detailed explanation in [Kan05, p.
104�]. We only have to use an appropriate inner product instead of the eu-
clidean one, as we have L2-functions instead of vectors.
As above Aj =

∂u
∂yj

is the partial derivative of u with respect to the j-th pa-

rameter of u. With this, the modi�ed Gram-Schmidt method has the following
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form:

q1 ∶=
A1

∥A1∥
.

Let now q1, ..., qj−1 be a orthonormal system. Further de�ne

rij ∶=< qi, q̃j > for j < i, with q̃j ∶= Aj −
i−1
∑
l=1
rljql.

Then �nally

rjj ∶= ∥Aj −
j−1
∑
l=1

rljql∥ and qj ∶=
1

rjj
(Aj −

j−1
∑
l=1

rljql) .

The Gram-Schmidt method in this version is numerically stable [Kan05, p.106].
In total one gets a decomposition of the form A = QR, where Q = (q1∣...∣qn) and
Rij = rij .

Equation of motion

As the constructed family q1, ...qn ∈ L2(Rd) is an orthonormal family with re-
spect to the used inner product, it holds < qi, qj >= δij . Inserting a qi, i ∈ 1, .., n
in the Galerkin condition (1.1), we get

0 = ⟨qi ∣ QRẏ − b⟩

= ⟨qi ∣ (q1∣...∣qn)Rẏ − b⟩

=
n

∑
l=1

⟨qi∣ql⟩
²
=δil

(Rẏ)l − ⟨qi∣b⟩

= (Rẏ)i − ⟨qi∣b⟩.

De�ning Q∗b ∶= (⟨qi∣b⟩)
n
i=1 we can write this vector valued as

0 = Rẏ −Q∗b ⇔ Rẏ = Q∗b. (1.9)

Therefore we get the new parameters y(t1) at time t1, by evaluating the solution
of the ordinary di�erential equation (ODE)

ẏ(t) = R−1Q∗b, with y(t0) = y, (1.10)

at time t1, where y are the parameters at time t0. With the new parameters we
get a new A and b. With them we can redo the orthonormalization for the next
time step and so on.

1.2.3 Real formulation of the problem

As u is a complex valued function in L2(Rd) one could think of using the inner
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product

< f, g > = ∫
Rd
f(x)g(x) dx. (1.11)

If we use this inner product in the Gram Schmidt method from above, the
solution of the ODE in (1.10) would in general be complex. This would mean
that especially the parameters p and q could become complex. As we have
seen in section 1.1, these parameters are related to the momentum and position
average, therefore they should stay real. Still this inner product will be useful
to re-formulate it as a real-value problem.
First we write the complex parameters Cj and ζj with its real- and imaginary
parts, i.e. Cj = Aj + iBj and ζj = γj + iδj . With this u writes as

u(x) =
m

∑
j=1

exp(
i

ε
(

1

2
(x − qj)

T
(Aj + iBj)(x − qj) + p

T
j (x − qj) + γj + iδj)) .

(1.12)

Recall the de�nition u̇ = Λ′(y)ẏ with the only di�erence that y contains now
only real parameters, i.e. y = (qj , pj ,Aj ,Bj , γj , δj)

m
j=1. De�ne X(y) ∶= Λ′(y) and

separate it into real and imaginary part. Then we have

X(y) = (
Re ∂u

∂q1
, Re ∂u

∂p1
, Re ∂u

∂A1
, Re ∂u

∂B1
, Re ∂u

∂γ1
, Re ∂u

∂δ1
, Re ∂u

∂q2
, . . .

Im ∂u
∂q1

, Im ∂u
∂p1

, Im ∂u
∂A1

, Im ∂u
∂B1

, Im ∂u
∂γ1

, Im ∂u
∂δ1

, Im ∂u
∂q2

, . . .
) .

(1.13)

Note that each entry of this matrix is now a real-valued L2-function. Now we
use a real inner product, which we denote with (⋅, ⋅) and which is de�ned as

⎛

⎝
(

Re ∂u
∂yi

Im ∂u
∂yi

) ,
⎛

⎝

Re ∂u
∂yj

Im ∂u
∂yj

⎞

⎠

⎞

⎠
∶= ∫

Rd
Re

∂u

∂yi
Re

∂u

∂yj
+ Im

∂u

∂yi
Im

∂u

∂yj
dx (1.14)

= Re⟨
∂u

∂yi
,
∂u

∂yj
⟩. (1.15)

We will use the inner product (⋅, ⋅) in the Gram Schmidt method on the matrix
X(y) to get the wanted decomposition X(y) = QR. With Q and R we solve
the ODE from (1.10) to get new parameters at time t+ τ . To calculate the real
inner product (⋅, ⋅), we will calculate the complex inner product of these func-
tions and then take the real part, because of relation (1.15). The calculation of
the complex integrals will be discussed in chapter 2.

Now we want to formulate the Dirac-Frenkel variational condition in (1.1) for
the real problem and we will do this in the same way as in [Lub08, p.48�]. First
write u in u = v + iw, where v,w are now real valued L2 functions. Further
note that our Hamiltonian H is a real operator. Now insert u = v + iw in the
Schrödinger equation and separate it into real and imaginary part, we get

εv̇ =Hw

εẇ = −Hv.
(1.16)
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Now we de�ne the matrix

J = (
0 −1
1 0

) .

Note that the multiplication with J corresponds to the multiplication with the
imaginary unit i. With that we can rewrite (1.16) to

(
v̇
ẇ
) =

1

ε
J−1 (

Hv
Hw

) .

Taking now the real part of the Dirac-Frenkel variational principle (1.1) yields
the following real formulation

(µ ∣ u̇ −
1

ε
J−1 (

Hv
Hw

)) = 0 for all µ ∈ TuM. (1.17)

In the notation with X(y) we have

(µ ∣ X(y)ẏ −
1

ε
J−1 (

Hv
Hw

)) = 0 for all µ ∈ TuM. (1.18)

Applying the modi�ed Gram-Schmidt method with the real inner product, we
get from (1.18) via an analogous calculation as for equation (1.9) an equation
of motion

Rẏ =
1

ε
(Im⟨qi∣Hu⟩)

n
j=1 , (1.19)

where (qj)
n
j=1 is the orthonormal family we get from the Gram-Schmidt method.

Calculating the inner product

The hardest task in the implementation of this algorithm is the calculation of all
appearing inner products, as these inner products are high-dimensional integrals
over the whole Rd. The curse of dimensionality could for example be managed
by using Monte-Carlo methods.
We will introduce an other way to calculate these kind of integrals using so called
Hagedorn wave packets, which allow us calculations without an approximation
error. This will be explained in detail in chapter 2.

1.3 Appearing derivatives

In section (1.2) we saw that we need the time derivatives of all the parameters
to get the matrix A, or in the real formulation, of the matrix X(y), i.e. we want
to calculate ∂u/∂yj , where yj is a parameter of the approximation u. Recall

u(x) =
m

∑
j=1

ajgj(x), where

gj(x) = exp(
i

ε
(

1

2
(x − qj)

TCj(x − qj) + p
T
j (x − qj) + ζj)) .

14



A straight forward calculation gives us the derivatives with respect to the (in
general) complex parameters

∂u

∂aj
= gj(x) (1.20)

∂u

∂(qj)µ
=
i

ε
ajgj(x)(−Cjx +Cjqj − pj)µ (1.21)

∂u

∂(pj)µ
=
i

ε
ajgj(x)(x − qj)µ (1.22)

∂u

∂Cj
=
i

2ε
ajgj(x)(x − qj)

T
(x − qj) (1.23)

∂u

∂ζj
=
i

ε
ajgj(x). (1.24)

When deriving to the real parameters, the derivatives with respect to q and p
do not change. For the other parameters we get

∂u

∂Aj
=
∂u

∂Cj
(1.25)

∂u

∂Bj
= i

∂u

∂Cj
(1.26)

∂u

∂γj
=
∂u

∂ζj
(1.27)

∂u

∂δj
= i

∂u

∂ζj
. (1.28)

We can see that it is enough to know the complex derivatives. To get inner
products of the form (1.14) we need to calculate the complex inner product of
these functions and take the real part of the result. Calculating the complex
inner product will be presented in chapter 2.

As in the Hamiltonian H appears the Laplace-operator, we also need to cal-

culate − ε
2

2
∆u. An explicit calculation gives us

−iε∇xgj(x) = (Cj(x − qj) + pj)gj(x)

and

−
ε2

2
∆gj(x) = Γj(x)gj(x), with

Γj(x) = (
1

2
(x − qj)

TC2
j (x − qj) + p

T
j Cj(x − qj) +

1

2
∣pj ∣

2
−
iε

2
tr(Cj)) .

The computation for a single Gaussian can also be found in [LL, p.24]. All
together we get

−
ε2

2
∆u(x) =

m

∑
j=1

ajgj(x)Γj(x), (1.29)
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with the Γj(x) from above.

Multiplication of Gaussians

When using the inner product (1.11), we will need to know what the multipli-
cation of two Gaussians with the form as in (1.3) is, i.e. we want to calculate

gj(x)gl(x), where gj has the parameters (qj , pj ,Cj , ζj) and gl the parameters
(ql, pl,Cl, ζl). If we de�ne

C ∶= −Cj +Cl,

q ∶= (Im(C))
−1

(Im(−Cj)qj + Im(Cl)ql),

p ∶= −pj + pl − 2 Re(−Cj)qj − 2 Re(Cl)ql −Re(C)q,

ζ ∶= −ζj + ζl − q
T
j Cjqj + p

T
j qj + q

T
l Clql − p

T
l ql − q

TCq + pT q, (1.30)

then we have

< gj , gl >= ∫
Rd
gj(x)gl(x)dx = ∫

Rd
g(x)dx,

where g(x) is the Gaussian with parameters (q, p,C, ζ), de�ned as above.

16



Chapter 2

Hagedorn wave packets

In 1981 and 1985 George Hagedorn presented a parameter based orthonormal
basis of L2(Rd) in [Hag81] and [Hag85]. These functions are multi-dimensional
Gaussians multiplied with a polynomial and are now called Hagedorn func-
tions. This theory was developed further in the important publication of Hage-
dorn [Hag98]. Here, the Hagedorn functions are formally de�ned by rising and
lowering operators and main properties are proofed. In this chapter, we will
recap and summarize main properties of the Hagedorn functions that will be
needed later for the formulation of the novel algorithm. The de�nitions and
theorems presented in this chapter are mainly taken from [Tro17] and [Lub08].

2.1 Theoretical background

First of all, recall that the matrices Cj in (1.3) are complex symmetric with
positive de�nite imaginary part. This property allows us to �nd a certain de-
composition of C in two matrices Q and P .

Lemma 2.1

Let C be a complex symmetric matrix in Cd×d with positive de�nite
imaginary part. Then there exist two invertible matrices Q and P with
C = PQ−1.
Conversely, arbitrary matrices Q,P ∈ Cd×d which satisfy

(1) QTP − PTQ = 0 (2) Q∗P − P ∗Q = 2iI,

are invertible and the matrix de�ned as C = PQ−1 is complex symmetric
with positive de�nite imaginary part.

This result and the proof can be found in [Lub08, p.123f].

Proof.
Suppose we have matrices Q and P which satisfy condition (1) and (2). Let v
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be an arbitrary vector in Cd. Now multiply equation (2) form the left with v∗

and from the right with v. Then we have

v∗Q∗Pv − v∗P ∗Qv = 2iv∗v

⇔ (Qv)∗(Pv) − (Pv)∗Qv = 2i ∥v∥
2
.

This shows that Qv = 0 implies directly v = 0, thus kerQ = {0} which implies Q
is invertible. The same argument holds for P .
Now multiply equation (1) from the left with (Q−1)T and from the right with
Q−1. Then we have

PQ−1
− (Q−1

)
TPT = 0,

therefore the matrix C = PQ−1 is complex symmetric. Further it holds

(ImC)QQ∗
=

1

2i
(C −C∗

)QQ∗
=

1

2i
(PQ−1

− (Q−1
)
∗P ∗

)QQ∗

(2)
=

1

2i
2i(QQ∗

)
−1QQ∗

= I,

where the last line can be obtained from equation (2). Therefore we have ImC =

(QQ∗)−1 and as QQ∗ has only positive eigenvalues, ImC is positive de�nite.
Conversely if we de�ne Q = (ImC)−1/2 and P = CQ, it is easy to see that Q and
P satisfy equation (1) and (2).

(1) QTP − PTQ = QTCQ −QTCQ = 0

(2) Q∗P − P ∗Q = Q∗CQ − (CQ)
∗Q = Q∗

(C −C∗
)Q

= Q∗
(2i ImC)Q = 2i((ImC)

−1/2
)
∗ ImC(ImC)

−1/2
= 2iI.

Remark

In Hagedorn's original papers he used matrices A and iB instead of Q and P .
This gives prefactors in some of the following formulas. As the current literature
mainly uses the QP notation, we will do it as well. Also the next de�nition of
the Hagedorn functions is not the original one of Hagedorn and can be found
in [Tro17, p.72f].
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De�nition 2.1: Hagedorn functions

Let C be a complex symmetric matrix with positive de�nite imaginary
part, Q = Im(C)−1/2, P = CQ and p, q ∈ Rd. Then the �rst Hagedorn
function is de�ned as

ϕ0(q, p,Q,P, x) ∶= (πε)−d/4 det(Q)
−1/2e

i
2ε (x−q)TPQ−1(x−q)+ iεpT (x−q).

(2.1)

The higher order Hagedorn functions are de�ned recursively. Let k ∈ Nd
now be a multi-index and M = Q−1Q̄. Then the k-th Hagedorn function
ϕk(q, p,Q,P, x) is de�ned as

ϕk(q, p,Q,P, x) ∶=
1

√
2∣k∣k!

pk (
1

√
h̵
Q−1

(x − q))ϕ0(q, p,Q,P, x), x ∈ Rd,

(2.2)

where pk are multivariate polynomials which are de�ned via the following
recursion

p0 = 1, (pk+ej)
d

j=1 = B̂
�pk where B̂�

= 2x −M∇x.

For the computation of the multivariate integrals we need to have some certain
Hagedorn functions. Therefore we need all polynomials pk up to a certain order.
We will see that it su�ces to calculate all pk up to order 4. A list with all needed
polynomials pk can be found in the appendix (A.1). With this computation one
can see that the ϕk are indeed a Gaussian times a multi-variate polynomial.

2.1.1 Hagedorn functions via ladder operators

As mentioned before, we can de�ne the Hagedorn functions via ladder operators,
as it was originally done by Hagedorn. The way of de�ning the Hagedorn
functions with the ladder operators can be found in [Hag98], [Lub08] or [Tro17].
Taking the notation from [Lub08] we de�ne for a ψ ∈ S(Rd),

(q̂ψ)(x) = xψ(x), (p̂ψ)(x) = −iε∇ψ(x), x ∈ Rd.

With this operators we can de�ne the ladder operators:

A = A(q, p,Q,P ) = −
i

√
2ε

(PT (q̂ − q) −QT (p̂ − p)) (2.3)

A�
= A�

(q, p,Q,P ) =
i

√
2ε

(P ∗
(q̂ − q) −Q∗

(p̂ − p)) . (2.4)
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Now let ei be the d-dimensional i-th unit vector, i.e. ei = (0, ..,0,1,0, ..,0). Then
for a k ∈ Nd and the ϕ0 from (2.1), the ϕk can be de�ned as

ϕk+ei(q, p,Q,P, x) =
1

√
ki + 1)

A�
iϕk(q, p,Q,P, x). (2.5)

Further it can be found in [Lub08, p.128] that

ϕk−ei(q, p,Q,P, x) =
1

√
ki
Aiϕk(q, p,Q,P, x). (2.6)

This shows that the operators A� and A can be seen as raising and lowering
operators. The de�nition via ladder operators is equivalent to the one in 2.1.
An other interesting fact is that the functions ϕk form a complete orthonormal
family of functions of L2(Rd). One can �nd this in theorem 2.3 in [Lub08, p.128].

2.1.2 Properties of Hagedorn functions

A very useful property of the Hagedorn functions is that one can easily calculate
its Fourier transform. The Fourier transform with the semiclassical parameter
ε reads

F
εϕ(ξ) = (2πε)−d/2 ∫

Rd
ϕ(x)e−

i
εx
T ξ dx, ξ ∈ Rd,

for all ϕ ∈ L2(Rd). This can be found in [Tro17, p.74]. The following theorem
is crucial for the presented algorithm, as it will be clari�ed later.

Theorem 2.1

Let k ∈ Nd be a multi-index and ϕk the corresponding Hagedorn function
de�ned as in de�nition (2.1). Then it holds

F
εϕk(q, p,Q,P, ⋅)(ξ) = e

− iεpT qϕk(p,−q,P,−Q, ξ). (2.7)

This result and a full proof of it can be found in [Tro17, p.75f]. The original
proof was done by Hagedorn and can be found in [Hag85, p.371]. He proofed
this via an induction over ∣k∣, which is a lengthy calculation.
The importance of this result can not be emphasized enough. The left side
is, in general, a high-dimensional integral of a L2(Rd)-function, while the right
side is only an evaluation of the same function at a certain point. In addition,
we don't have any approximation errors, we get the exact values for the integrals.

Another important result is a recursion relation of the Hagedorn functions.
The following theorem will allow us to calculate integrals of a Gaussian times a
low-dimensional polynomial.
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Theorem 2.2

Let k ∈ Nd be a multi-index, Z = (q, p,Q,P ) and ϕk(Z,x) the k-th
Hagedorn function as in De�nition 2.1. Further let ej = (0, ...,0,1,0, ...,0)
be the j-th d-dimensional unit vector and de�ne ϕk−ej = 0, if k − ej ∉ Nd.
Then the three-term recurrence

Q (
√
kj + 1ϕk+ej(Z,x))

d

j=1
=

√
2

ε
(x − q)ϕk(Z,x) −Q (

√
kjϕk−ej(Z,x))

d

j=1
(2.8)

holds for ∀k ∈ Nd.

The tree-term recursion formula as above can be found in [Lub08, p.128] and a
proof of it for the centred case with q = 0 in [Tro17, p.84]. Here we will proof
this also for the case q ≠ 0.

Proof.
We will proof the statement with help of the ladder operators from (2.3) and
(2.4). Multiply (2.5) with Q and bring the constant on the other side. We get

Q (
√
kj + 1ϕk+ej)

d

j=1
= QA�ϕk

=
i

√
2ε

(QP ∗
(x − q) −QQ∗

(p̂ − p))ϕk. (2.9)

Using equation (2) from lemma 2.1 we get

Q∗P − P ∗Q = 2iI⇔ QQ∗PQ−1
−QP ∗

= 2iI

⇔ QP ∗
= QQ∗PQ−1

− 2iI.

We insert this is (2.9), use that PT = QTPQ−1 by equation (1) from lemma 2.1
and QQ∗ = QQ∗ = QQT . All together we get

2.9 =
i

√
2ε

(−2iI(x − q) +QQ∗PQ−1
(x − q) −QQ∗

(p̂ − p))ϕk

=

√
2

ε
(x − q)ϕk +

i
√

2ε
(QQ∗PQ−1

(x − q) −QQ∗
(p̂ − p))ϕk

=

√
2

ε
(x − q)ϕk +

i
√

2ε

⎛
⎜
⎜
⎝

QQTPQ−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=PT

(x − q) −QQT (p̂ − p)

⎞
⎟
⎟
⎠

ϕk

=

√
2

ε
(x − q)ϕk −Q

−i
√

2ε
(PT (x − q) −QT (p̂ − p))ϕk

=

√
2

ε
(x − q)ϕk −QAϕk

2.6
=

√
2

ε
(x − q)ϕk −Q (

√
kjϕk−ej)

d

j=1
.
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2.2 Application of Hagedorn's wave packets

We now present how to e�ciently compute high-dimensional integrals of a Gaus-
sian times a polynomial. We will get this by applying theorem 2.1 and 2.2. A
complete list for all intergrals of the form ∫Rd f(x)g(x)dx, with f a polynomial
of degree ≤ 4, can be found in appendix (A.2). We will present �rst the case
where f(x) = xi.

Consider a Gaussian g as in (1.3). Apply the tree-term recursion (theorem
2.2) to the case k = (0, ..,0). As k − ej ∉ Nd ∀j, the last term of the recursion
vanishes. Then we have

Q (ϕej(Z,x))
d

j=1 =

√
2

ε
(x − q)ϕ0(Z,x)

⇔ (
d

∑
l=1
Qjlϕel(Z,x))

d

j=1
=

√
2

ε
(x − q)ϕ0(Z,x). (2.10)

Now take only the i-th component of the equation and integrate over the whole
Rd. Then we can apply theorem 2.1 and get for the left side

d

∑
l=1
Qil ∫

Rd
ϕel(Z,x)dx =

d

∑
l=1
Qil(2πε)

d/2
F
εϕei(0). (2.11)

For the right side of the equation (2.10) we get
√

2

ε
∫
Rd

(x − q)iϕ0(Z,x)dx

=

√
2

ε
∫
Rd
xiϕ0(Z,x)dx −

√
2

ε
∫
Rd
qiϕ0(Z,x)dx

=

√
2

ε
∫
Rd
xiϕ0(Z,x)dx −

√
2

ε
qi(2πε)

d/2
F
εϕ0(0). (2.12)

Inserting this and (2.11) in (2.10) and using de�nition 2.1 we get
√

2

ε
∫
Rd
xi(πε)

−d/4 det(Q)
−1/2e−

i
ε ζg(x)dx

= (2πε)d/2
⎛

⎝

√
2

ε
qiF

εϕ0(0) +
d

∑
l=1
QilF

εϕel(0)
⎞

⎠
.

Finally de�ne Z̃ ∶= (p,−q,P,−Q). We apply now theorem 2.1 to calculate the
Fourier transform of the appearing Hagedorn functions. Then we get

∫
Rd
xig(x)dx

= (πε)d/4 det(Q)
1/2

(2πε)d/2e
i
ε ζ (qie

i
εp
T qϕ0(Z̃,0) +

√
ε

2

d

∑
l=1
Qile

i
εp
T qϕel(Z̃,0)) .

(2.13)
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This shows us how we can calculate integrals of the type Gaussian times xi.
The same strategy can be applied with polynomials of higher order, the only
di�erence is that one needs to solve a linear system of equations. For further
details, we refer to Appendix A.2. We now provide an example, that explains
how to use this information to calculate appearing complex inner products in
the algorithm.

Example

Lets say we have an approximation with two Gaussians, i.e. u(x) = g1(x)+g2(x).
During the modi�ed Gram Schmidt method, we will need to calculate the inner
product of the derivatives Aj = ∂u/∂ζ1 and Al = ∂u/∂(p2)1, where ζ1 stems form
the �rst and (p2)1 is the �rst component of p2 from the second Gaussain. The
derivatives were explicitly calculated in (1.24) and (1.22). The function g(x) is
the multiplication of g1(x) and g2(x) de�ned as in chapter 1.

< Aj ,Al > =<
∂u

∂ζ1
,
∂u

∂p2
>= ∫

Rd
∂u

∂ζ1
(x)

∂u

∂p2
(x)dx

= ∫
Rd
i

ε
g1(x)

i

ε
g2(x)(x − q2)1dx

=
1

ε2
∫
Rd
g1(x)g2(x)(x − q2)1dx

=
1

ε2
∫
Rd
g(x)(x − q2)1dx

=
1

ε2
(∫

Rd
xig(x)dx − (q2)1 ∫

Rd
g(x)dx) .

The �rst integral can be calculated as shown in (2.13). The second one can be
calculated in a similar way, it is just an evaluation of the �rst Hagedorn function
ϕ0(x) at a certain point. An explicit formula can be found in appendix (A.2).
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Chapter 3

The algorithm

In this chapter, it will be explained the algorithm, its structure and how ti can
be implemented in Matlab R2018b. The following chart presents the work-�ow
of the algorithm.

Initializations

Pre-calculations

⟨Ai∣Aj⟩

⟨Ai∣ −
ε2

2
∆u⟩

⟨Ai∣V u⟩

Orthogonaliza-
tion

Conversion to a
real problem

Solving the
ODE

Renormation

Mod.
Gram-Schmidt

⟨qi∣Hu⟩

Figure 3.1: Structure of the Code
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3.1 Renormation

As we have seen in theorem 1.2, the norm of u should stay constant. In the
numerical experiments, due to round o�-errors, it has been observed that the
norm does not remain constant. Therefore, we renormalise u after each time
step. This can e�ciently done as follows. Assume that gjl is the multiplication
of two Gaussians gj and gl, de�ned as in chapter 1. It su�ces to multiply a

phase e
b
ε to each Gaussian. Further de�ne C = e

2b
ε . Then we have

1
!
= ∥u∥

2
2 =

m

∑
j,l=1
∫
Rd
e
b
ε gj(x)e

b
ε gl(x)dx = e

2b
ε

m

∑
j,l=1
∫
Rd
gjl(x)dx.

With that we get

1

∥u∥
2
2

= C ⇔ b =
ε

2
log

⎛

⎝

1

∥u∥
2
2

⎞

⎠
.

This calculation shows us that if we add −ib to each ζj , u will be of unit norm.

We must only calculate ∥u∥
2
2 after each time step. We recall the de�nition of the

Hagedorn function ϕ0. Suppose g is a Gaussian with the parameters (q, p,C, ζ)
and ϕ0 the Hagedorn function of de�nition (2.1) with parameters (q, p,C). Then
the following identity holds

exp
iζ
ε (πε)d/4 det(Q)

1/2ϕ0(x) = g(x).

Integrating the last identity over Rd and applying Theorem 2.1, we obtain that

∫
Rd
g(x)dx = exp

iζ
ε (πε)d/4 det(Q)

1/2
∫
Rd
ϕ0(x)dx

= exp
iζ
ε (πε)d/4 det(Q)

1/2
(2πε)d/2Fεϕ0(0)

2.1
= exp

iζ
ε (πε)d/4 det(Q)

1/2
(2πε)d/2e−

i
εp
T qϕ0(p,−q,P,−Q,0).

To get now ∥u∥
2
2 one must calculate all integrals of gjl and sum them up.

3.2 Pre-calculations

The pre-calculation of all appearing inner products is the most intensive task in
the implementation, as these are high dimensional integrals. As it will be shown
in the numerical experiments presented in chapter 4, the pre-calculations make
up most of the computational time of the algorithm.

Complex inner products

Let Ai,Aj be the derivatives of the approximation u with respect to a given
parameter. In order to make the orthogonalization process e�cient, we need
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to pre-compute all inners products of the form (Ai,Aj), where (⋅, ⋅) is the real
inner product (1.14). As shown in section 1.2.3 it holds

((
ReAi
ImAi

) ,(
ReAj
ImAj

)) = Re⟨Ai∣Aj⟩. (3.1)

For a fast performance of the code, we calculate all possible combinations of in-
ner products of the form ⟨Ai∣Aj⟩. If d is the dimension of the system, one Gaus-
sian has 2d + 2 derivatives. 2d derivatives for the parameters qi, pi i ∈ {1, ..., d},
one derivative for C and one derivative for ζ. If we use m Gaussians we have
a total number of (m(2d + 2))2 possible combinations. As the complex inner
product is anti-linear it su�ces to calculate only half of them.
One single calculation has the following structure:

Write ⟨Ai∣Aj⟩ as a linear comb. of integrals of the form ∫Rd g(x)f(x)dx, where
f is a polynomial

Write all ∫Rd g(x)f(x)dx as a linear combination of Fεϕk

Calculate all needed Fεϕk with theorem 2.1

Figure 3.2: Calculation of ⟨Ai∣Aj⟩

An explicit example for the computation was given in the example in section
2.2. Formulas for all cases can be found in (A.3.1).

Laplacian

In the same way as above, we want to pre-calculate all inner products of the

form ⟨Ai∣ −
ε2

2
∆u⟩, where Ai is a derivative of u with respect to a parameter.

We follow a similar strategy as presented in �gure 3.2, where the only di�erence

is that we replace the derivative Aj with − ε
2

2
∆u. Explicit formulas for the

computation can be found in (A.3.2).
For the computation of the kinetic energy, we consider the general case where
the parameters aj for j = 1...d are not necessarily constant. Recall that ∂u

∂aj
= gj .

Then we can see that for the kinetic energy holds

⟨u∣ −
ε2

2
∆u⟩ =

m

∑
j=1

⟨gj ∣ −
ε2

2
∆u⟩ =

m

∑
j=1

⟨aj ∣ −
ε2

2
∆u⟩.
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Therefore, the above quantities with respect to the parameter aj need to be
pre-computed.

Potential

As a potential we choose the so called torsional potential, which is de�ned as

V (x) =
d

∑
j=1

(1 − cos(xj)), ∀x ∈ Rd, (3.2)

as considered in [FGL09, p.11]. We need to calculate scalar products of the form
⟨Aj ∣V u⟩, where Aj is the derivative with respect to one of the parameters.

We remind the identity cos(x) = 1
2
(eix + e−ix), which has to be used to cal-

culate e�ciently all the inner products of V with respect to the derivatives of
u. Let el be the l-th unit vector. De�ne for j ∈ 1, ..., d

ζ+jl ∶= ζj + εql p+jl ∶= pj + εel
ζ−jl ∶= ζj − εql p−jl ∶= pj − εel.

Further let g+jl be the Gaussian with parameters (qj , p
+
jl,Cj , ζ

+
jl) and analogously

g−jl be the Gaussian with parameters (qj , p
−
jl,Cj , ζ

−
jl). If yµ is the µ-th parameter

of u we have

⟨Aµ∣V u⟩ =
d

∑
j,l=1

⟨Aµ∣gj −
1

2
g+jl(x) −

1

2
g−jl(x)⟩.

It su�ces to calculate the inner products of Aj with an arbitrary Gaussian g.
We refer to the appendix (A.3.2) for an explicit calculation of all the appearing
complex inner products. Finally the real inner product is obtained considering
the real part of the complex inner product. This results by the same calculation
as in (1.15).

3.3 Orthogonalization

Conversion to a real problem

As already explained in section 1.2.3 we have to formulate the whole problem as
a real one. All the pre-calculations are complex valued. We have already seen
in (1.15) that it holds

((
ReAi
ImAi

) ,(
ReAj
ImAj

)) = Re⟨Ai,Aj⟩

and in (1.19) that

((
ReAi
ImAi

) ,
1

ε
J−1 (

ReHu
ImHu

)) =
1

ε
((

ReAi
ImAi

) ,(
ImHu
−ReHu

))

=
1

ε
Im⟨Ai,Hu⟩.
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Recall that in the real formulation we have more parameters as in the complex
one, because one writes C = A + iB and ζ = γ + iδ. Getting the inner products
of the derivatives with respect to the real parameters is straightforward, as
du/dC = du/dA and idu/dC = du/dB. Analogously this holds for the derivatives
with respect to γ and δ.

Modi�ed Gram-Schmidt method

Now we have all ingredients to apply the modi�ed Gram-Schmidt method intro-
duced in chapter 1, with respect to the real inner product (1.14). It is important
to underline the fact that we do not calculate the orthonormal family {q1, ..., qn}
explicitly. Along the implementation, it su�ces to compute the inner products
of the quantities (qi∣Aj) or (qi∣Hu).
Recall the de�nition of the entries of the R matrix. We can see that for j < i it
holds

rij =
1

rii
(Ai −

i−1
∑
l=1
rliql ∣ Aj −

i−1
∑
l=1
rljql)

=
1

rii

⎡
⎢
⎢
⎢
⎢
⎣

(Ai∣Aj) −
i−1
∑
l=1
rli(Aj ∣ql) + rlj(Ai∣ql) +

i−1
∑
l,m=1

rlirlj(qi∣qj)

⎤
⎥
⎥
⎥
⎥
⎦

.

As (qi∣qj) = δij , it just su�ces to know the inner products of the form (Aj ∣ql).
These can be calculated recursively by the formula

(Aj ∣ql) = (Aj∣
1

rll
[Al −

l−1
∑
m=1

rmlqm])

=
1

rll
[(Aj ∣Al) −

j−1
∑
m=1

rml(Aj ∣qm)] .

Saving the already calculated values of (Aj ∣ql) avoids long recursions in the code
and allows a fast computation.

Calculation of ⟨qi∣Hu⟩
In a similar way as in the Gram-Schmidt method, we can get the inner products
of the form (qi∣

1
εi
Hu). This will be the short notation for the inner product

((Re ql, Im ql)
T ∣ε−1(ImHu,−ReHu)T ). Using this abbreviation we have

(qi∣(εi)
−1Hu) =

1

rii
[(Ai∣(εi)

−1Hu) −
i−1
∑
l=1
rli(ql∣(εi)

−1Hu)] ,

therefore it su�ces to know the values for all (Ai∣(εi)
−1Hu). The rest can be

obtained recursively again. We get these values by taking the imaginary part
of the complex inner product, i.e. Im ⟨Ai∣(εi)

−1Hu⟩.
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3.4 Solving the equation of motion

To conclude we need to solve the equations of motion (1.19)

Rẏ =
1

ε
(Im⟨qi∣Hu⟩)

n
j=1 .

De�ning Q∗b ∶= (Im⟨qi∣Hu⟩)
n
j=1 this is equivalent to

Rẏ = Q∗b ⇔ ẏ = R−1Q∗b.

This is a system of linear ordinary di�erential equations with initial data y(0) =
y. As some of the entries are only real numbers and some d× d matrices we use
the explicit Euler method.
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Chapter 4

Numerical experiments

In this section, numerical experiments will be presented. We will consider dif-
ferent approximations u, where we change the dimension of the system and the
number of Gaussians in the approximation. First recall the de�nition of the
torsional potential

V (x) =
d

∑
j=1

(1 − cos(xj)), ∀x ∈ Rd. (4.1)

The torsional potential describes the rotation of an atom or molecule around
a symmetry axis. Therefore one expects that after a certain time, the position
operator q comes back to its initial position, as the cosine is a periodic function.
We will compare our results with the ones in [FGL09], where they compare
sparse Hagedorn wave packets with the Fourier method.

Kinetic energy

Consider a normalized Gaussian u as in de�nition (1.3). Further suppose that
the matrices Cj have the structure Cj = (Aj + iBj)I, where I is the identity
matrix and Aj ,Bj are real numbers with Bj > 0. Then holds for the kinetic
energy of our approximation u

⟨u ∣ −
ε2

2
∆u⟩ =

m

∑
j=1

(
∣pj ∣

2

2
+
εd

2

(Aj/2)
2 + (Bj/2)

2

Bj/2
) . (4.2)

This result can be found in [FL06, p.46]. As they do use wave packets without
the pre-factor 1/2 before the matrix Cj , we have to write Aj/2 and Bj/2 instead
of Aj and Bj in (4.2). The formula gives us an exact value for the kinetic energy
with given parameters.

4.1 One dimensional experiments

In this section we are considering one dimensional systems. For the approxima-
tion u we will analyse single Gaussians and linear combinations of Gaussians.
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In both cases we will use separable Gaussians, i.e. the complex number C in
each Gaussian might change during the propagation.

4.1.1 Single Gaussian

First, we assume the approximation u to be a single Gaussian, i.e. u can be
expressed as

u(x) = g(x) = exp(
i

ε
(

1

2
(x − q)C(x − q) + p(x − q) + ζ)) , x ∈ R

with q, p ∈ R, C, ζ ∈ C and ε > 0. We will set the parameters for the initial
condition to be q(0) = 1, p(0) = 0, C(0) = i and ζ(0) = 0 . As C might change
during the propagation, we consider a separable Gaussian. We observe that
such a wave packet is not normalized yet and this procedure will be executed
in the algorithm as a �rst step by adjusting the phase ζ(0). We will �x the
step-size to ∆t = 10−2 and we propagate the system for 1000 steps in the case
of one Gaussian and 700 in the case with linear combinations.

Energy conservation

As stated in theorem 1.2, the total energy of the system remains constant. Using
the initial data from above, we show in �gure 4.1 the value of the total energy
for di�erent ε > 0.
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Figure 4.1: Separable Gaussian, left with ε = 1 and right with ε = 0.01

The total energy is conserved over the time, i.e. stays almost constant. The
small up-slope of the total energy is caused by the used time integrator. If one
uses a frozen Gaussian instead, the upward slope vanishes almost completely.
The periodic behaviour of the kinetic energy and potential energy presented in
�gure 4.1 are due to the choice of the torsional potential. By formula (4.2) we
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would expect the kinetic energy at time t = 0 be 1/4 for the case ε = 1 and be
1/400 for the case ε = 0.01. These are exactly the results we have in �gure 4.1.

Position and momentum

In the next �gures, we present the behaviour of the position q and the momen-
tum p over time. We assume the same initial condition as before.
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Figure 4.2: Left with ε = 1 and right with ε = 0.01

We observe the expected behaviour of the position q and the momentum p.
When the atom or molecule has rotated fully around an axis, it comes back to
the same position where it stated to rotate. This results is due to the periodicity
of the torsional potential.
From theorem 3.11 in [LL, p.20] we get that for the exact position and momen-
tum holds the di�erential equation q̇ = p. This relation can be observed in �gure
(4.2) as well.

4.1.2 Linear combination of Gaussians

Now we are assuming linear combinations of one dimensional Gaussians, i.e.

u(x) =
m

∑
j=1

exp(
i

ε
(

1

2
(x − qj)Cj(x − qj) + pj(x − qj) + ζj)) , x ∈ R,

with qj , pj ∈ R, Cj , ζj ∈ C and ε > 0. As initial data we use for g1 the parameters
q1 = 0.25, p1 = 0.5, C1 = i and ζ1 = 0. For the second Gaussian g2 we use q2 = 0,
p2 = −0.5, C2 = i and ζ2 = 0. Therefore we have m = 2. Again this is not a
normalized function yet. The normalization in the code will change ζ1 and ζ2
such that u has unit norm. As we allow the width matrix C to change in each
time step, we are considering a separable Gaussian.
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Figure 4.3: ε = 0.01

Here we can see that adding an other Gaussian keeps the oscillating structure
of the positions and momentums and of the kinetic and potential energy.

Numerical tests with di�erent initial data has shown that the stability of the
time integration hardly depend on the initial data, even if we are only in a one
dimensional setting. Slight changes can have a huge e�ect on the result. If
one changes C1 from i to 0.5 + i, the total energy starts to oscillate with an in-
creasing amplitude over time (after 500 steps an amplitude of 0.1). Using frozen,
instead of separable Gaussians, also improves the energy conservation over time.

Further it is interesting to know how many Gaussians one can add to the linear
combination. Experiments with the algorithm have shown that up to approxi-
mately m = 8 one-dimensional, frozen Gaussians, the energy conservation is as
stable as for example in �gure 4.3. Still this stability depends hardly on the
used initial data, hence it must be chosen cautiously.
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4.1.3 Convergence in time

For numerical analysis it is crucial to know the convergence of the algorithm in
time. We suppose some randomly generated initial data for a frozen Gaussian
with width matrix C = i, i.e. we have a single Gaussian only. As a reference
solution uref we take the result computed with a step size τ = 0.1 ⋅ 2−11. Then
we compare in L2-norm the approximation u with the reference solution uref at
�nal time t = 0.5 and t = 1. The exact value for ∥u(t) − uref(t)∥2 is obtained
using the Hagedorn wave packets from chapter 2.
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Figure 4.4: Temporal convergence in the L2-norm at t = 0.5 (left) and t = 1
(right) for a single, frozen Gaussian

We can see in �gure (4.4) that we have a temporal convergence in the L2-norm
of order 1. The order of the convergence does not depend on the choice ε.

Time convergence for linear combinations

Suppose now a linear combination of m = 3 frozen Gaussians, all with the
same width matrix Cj = i and ζj = 0. The rest of the initial data is randomly
generated. We do the same calculations as in the one dimensional case to see
how convergence changes. As a reference solution uref we take the solution to
this initial data with time step size τ = 0.1 ⋅ 2−13.
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Figure 4.5: Temporal convergence in the L2-norm at t = 0.1 (left) and t = 0.2
(right) for a linear combination of m = 3 frozen Gaussians

We observe similar results for linear combinations. In this case, the convergence
depends on the parameter ε. we obtain good results only for relatively small
time step sizes τ .

4.2 Higher dimensional experiments

For applications in quantum chemistry one must consider high dimensional
quantum systems. Therefore we assume in this section a system of dimension
d > 1. We will consider di�erent types of Gaussians, as presented in chapter 1.
Further we will consider linear combinations of these Gaussians.

4.2.1 Single Gaussian

Suppose for the approximation u the following form

u(x) = g(x) = exp(
i

ε
(

1

2
(x − q)TC(x − q) + pT (x − q) + ζ)) , x ∈ Rd,

with q, p ∈ Rd, C ∈ Cd×d, ζ ∈ C and ε > 0. First we will have a look on how the
di�erent types of energies behave in a higher dimensional setting.

3 dimensional system

Consider a 3-dimensional system, i.e. d = 3. For the frozen and the separable
Gaussian we use the initial data q = (1,0,0)T , p = (0.3,0.3,0.3)T , C = iI, where
I is the identity matrix, and ζ = 0. For the thawed Gaussian we use the same
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q, p and ζ, but choose

C =
⎛
⎜
⎝

i 0.2 0.2
0.2 i 0.2
0.2 0.2 i

⎞
⎟
⎠
.

Energy conservation

For the di�erent types of Gaussians we get di�erent propagations of the energy.
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Figure 4.6: Energy propagation

In this �gure we can see an interesting behaviour of the propagation. The prop-
agation for a frozen Gaussian behaves as expected in theory. More interesting
is that the propagation of the thawed Gaussian behaves much regular than the
one of the separable Gaussian, though a thawed Gaussian is more general than
a separable one.
The propagation for the separable one is symptomatic for many other cases.
The presented algorithm is quite unstable in the separable case and for many
thawed cases. The higher the dimension of the system, the less time steps can
be done before the total energy increases rapidly. As presented in chapter 1, it is
recommendable to use linear combination of frozen Gaussians instead of single
thawed or separable ones. Increasing the dimension still gives similar results as
for this example, but requires much more CPU time.
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Position average

Using the same 3-dimensional, frozen Gaussian as above, we analyze the time
propagation of the position average q. In accordance with the choice of the
torsional potential, it describes the rotation around an axis. The following
propagation shows 1300 steps with step-size τ = 10−2.

Figure 4.7: Propagation over time of the position average q.

Note that all these points lie in the same two dimensional plane. We can observe
the expected rotation around an axis. However we see that the position average
does not exactly come back to the same position where the propagation started,
what is most likely caused by round-o� errors.

4.2.2 Linear combination of Gaussians

Suppose now for the approximation u the following ansatz

u(x) =
m

∑
j=1

exp(
i

ε
(

1

2
(x − qj)

TCj(x − qj) + p
T
j (x − qj) + ζj)) , x ∈ Rd,

with qj , pj ∈ Rd, Cj ∈ Cd×d, ζj ∈ C and ε > 0. We are now in the most general
setting. As initial data we choose Cj = iI and ζj = 0 for all j and generate
random qj and pj for the frozen and separable Gaussians for all j. For the
thawed case we choose the same Cj as in the single Gaussian case, for all j. For
the dimension we choose d = 3. Choosing higher dimension gives similar results
for the energy propagation, but the computational time increases very fast. We
consider a linear combination of 3 Gaussians, i.e. m = 3.
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Energy conservation

The next plot shows the energy propagation for the di�erent types of Gaussians
de�ned above.
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Figure 4.8: Energy propagation, all for ε = 0.01.

We observe that frozen Gaussians have a more regular behaviour in time. Sepa-
rable and thawed Gaussians are only stable for a short times. Other experiments
have shown that the frozen Gaussians are stable even for long time intervals.
Still the stability of the energy propagation depends hardly on the initial data,
especially when we consider linear combinations of high-dimensional Gaussians.

4.2.3 Convergence in time

Again we suppose randomly generated initial data for a single, frozen Gaussian,
with width matrix C = i and ζ = 0. For the dimension we choose d = 3. As
for the one dimensional convergence we consider as reference solution uref with
time step-size τ = 0.1 ⋅ 2−11. We consider di�erent time step-sizes and ε > 0. For
the error in the L2-norm, i.e. ∥u − uref∥2 we get
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Figure 4.9: Temporal convergence in the L2-norm at t = 0.5 (left) and t = 1
(right) for a single, frozen 3-dimensional Gaussian

We see that we have di�erent order of convergence in time for di�erent choices
of the semiclassical parameter ε. We have to choose a relatively small time
step-size τ if we have a small ε. This makes calculations costly, but the error
decreases fast as well.

4.3 Evaluation of the algorithm

Performance

For practical applications we need to know how the algorithm performs. We
want to know how it behaves if one increases the dimension of the system and
what happens if one increases the number of Gaussians in the approximation
u. For the �rst case we consider a single Gaussian with the initial data q =

(1,0, ...,0)T , p = (0, ...,0)T ,ζ = 0 and C = iI, where I is the d-dimensional
identity matrix.
For the case with increasing number of Gaussians we consider a one dimensional
approximation with parameters Cj = i, ζj = 0 for all j and randomly generated
qj and pj . The plotted values are the needed time to make 10 time-steps of the
algorithm.
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Figure 4.10: CPU time of the code plottet against the dimension (left) and the
number of Gaussians (right)

We can see that run time increases exponentially with the dimension (≈ O(2d)),
while the run time increases only quadratically (≈ O(m2)) with the number of
Gaussians in the approximation. Hence increasing the dimension of the system
is very costly. Talking in absolute values, a 10-dimensional propagation with
100 steps in time needs 12000 seconds in total, which is approximate 3.5 hours.

4.3.1 Conclusion

As every code, this choice of implementing the vMCG method has its advantages
and disadvantages. Like other algorithms, this one is quite slow if one considers
a high-dimensional quantum system, see �gure (4.10). Further it has an unsta-
ble time propagation for long times, if separable or certain thawed Gaussians
are used in the approximation, as outlined in section 4.2. Nevertheless it gives
us good approximations if one considers frozen Gaussians or linear combination
of those. For those, the algorithm preserves the total energy also for long times
and the position and momentum average follow expected trajectories, see sec-
tion 4.1 and 4.2.
Compared to a standard method like MCTDH, the vMCG method does not
seem very competitive. However it is not meant to compete, but be a more
general and �exible method for computing direct dynamics [RPS+15, p.14].

More complex potentials can be considered easily, if they are a low dimensional
polynomial or can be expressed as an exponential function. Then it su�ces to
implement the inner products as a linear combination of Hagedorn wave packets
as described in chapter 2. If not, one has to �nd an other way to calculate all
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the appearing inner products, which in general requires problem-related approx-
imation techniques.

Numerical experiments have shown that using a single thawed Gaussian is not
�exible enough to simulate a real quantum system like a molecule. A lot of re-
search has been done to make linear combinations of frozen Gaussians a useful
method [RPS+15, p.2]. As the presented implementation of the algorithm is
energy preserving and the position and momentum average follow expected tra-
jectories in the frozen case even for long times, it makes it a useful and general
method for semiclassical approximations.

In further research it would be interesting to improve the time propagation,
to get a more stable algorithm even for separable and thawed Gaussians. Since
we need to normalize the Gaussian wave packet after each time step, developing
a norm preserving algorithm would be useful as well. This could possibly lead
to a stabilization in the time propagation. Furthermore, Hagedorn wave packets
might have further applications in di�erent �elds than quantum dynamics.
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Deutsche Zusammenfassung

Grundlage dieser Arbeit ist die zeitabhängige Schrödingergleichung in einer
semiklassischen Skalierung

iε
dψ

dt
=Hψ,

wobei ψ = ψ(x, t) eine Wellenfunktion, t ∈ R die zeitliche und x ∈ Rd die räum-
liche Variable ist. Weiter ist ε > 0 ein semiklassischer Parameter, welcher einer
skalierten Plank Konstante h̵ entspricht. H ist der Hamiltonoperator des Sys-
tems, welcher im Folgenden stets die folgende Form hat

Hψ(x, t) = −
ε2

2
∆ψ(x, t) + V (x)ψ(x, t).

Hierbei ist ∆ der Laplaceoperator bezüglich der räumlichen Variable x und V
ein reellwertiges Potential. Der Faktor ε2 repräsentiert den Massequotienten
von Elektronen und Atomkernen in einem Molekül [LL, p.2]. In dieser Ar-
beit wird ein Algorithmus vorgestellt, welcher für kleine ε > 0 eine Lösung der
Schrödingergleichung approximiert.
Klassische numerische Verfahren scheitern daran, dass das Problem im Allge-
meinen hochdimensional und hoch oszillatorisch ist [LL, p.2].

Ein vielversprechender Ansatz verwendet dazu Gauÿsche Wellenpakete. Diese
Klasse von Verfahren nennt sich variational multi-con�gurational Gaussians
(vMCG) und �ndet Anwendung in der Quantenchemie. Die Idee geht zurück
auf Heller [Hel75], welcher mehrdimensionale Gauÿfunktionen betrachtete und
Bewegungsgleichungen für deren Parameter herleitete. Diese Grundidee wurde
im Laufe der Zeit auch auf Linearkombinationen von solchen Gauÿfunktionen
angewendet, siehe hierfür zum Beispiel [RPS+15].

Diese Arbeit beschreibt einen neuen Ansatz wie man das vMCG Verfahren im-
plementieren kann. Dafür wird im Kapitel 1 das Problem abstrakt formuliert,
grundlegende Notationen werden eingeführt und Bewegungsgleichungen für die
Parameter der Gauÿfunktionen werden hergeleitet. Die abstrakte Formulierung
des Problems beruht in groÿen Teilen auf [Lub08].
Kapitel 2 führt die Theorie der Hagedornschen Wellenpaketen ein, welche von
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George Hagedorn in [Hag81], [Hag85] und [Hag98] entwickelt wurde. Diese
speziellen Funktionen erlauben es uns, hochdimensionale Integrale von Gauÿ-
funktionen multipliziert mit einem Polynom niedrigem Grades exakt auszurech-
nen. Diese Eigenschaft ist essenziell für den Algorithmus, da wir ein mod-
i�ziertes Gram-Schmidt Verfahren auf L2-Funktionen anwenden wollen und
deren Skalarprodukte berechnen müssen.

In Kapitel 3 wird erklärt, wie der Algorithmus im Detail implementiert wurde.
Im letzten Kapitel 4 werden einige numerische Experimente mit dem Algorith-
mus vorgestellt. Dieser wird auf ein- und mehrdimensionale Quantensysteme
angewendet und das Verhalten verschiedener Typen von Gauÿfunktionen wird
analysiert.
Es zeigt sich, dass der vorgestellte Algorithmus gute Ergebnisse liefet, wenn
man frozen Gauÿfunktionen als Approximation betrachtet. Hierfür wird die
Gesamtenergie des Systems auch für lange Zeiten konstant gehalten und auch
die Postions- und Momentumsparameter q und p folgen erwarteten Trajekto-
rien. Für separable und thawed Gauÿfunktionen ist der verwendete Zeitinte-
grator oft instabil und liefert nur für kurze Zeiten gute Ergebnisse. Verwendet
man stattdessen Linearkombinationen von frozen Gauÿfunktionen, so bleiben
die oben beschriebenen Eigenschaften erhalten und liefern eine brauchbare Ap-
proximation an die Wellenfunktion des Systems.
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Appendix A

Calculations and formulas

A.1 Hagedorn polynomials

Let ei = (0, ...,0,1,0, ..,0), where ei is 1 in the i-th component. Recall the
de�nition of the Hagedorn polynomials

p0 = 1, (pk+ej)
d

j=1 = B̂
�pk where B̂�

= 2x −M∇x.

An explicit calculation gives the following polynomials up to order 4.

k pk(x)

0 1
ei 2xi
2ei 4x2i − 2Mii

3ei 8x3i − 12Miixi
4ei 16x4i − 48Miix

2
i + 12M2

ii

ei + ej 4xixj − 2Mji

2ei + ej 8x2ixj − (4Mji + 4Mij)xi − 4Miixj
2ei + 2ej 16x2ix

2
j − 8Miix

2
j − 8Mjjx

2
i − (8Mij + 24Mji)xixj

+4M2
ji + 4MijMii + 4MiiMjj

ei + ej + el 8xixjxl − 4Mjixl − 4Mlixj − 4Mljxi
2ei + ej + el 16x2ixjxl − (8Mji + 8Mij)xixl − 8Miixjxl − 16Mlixixj

−8Mljx
2
i + 4MliMji + 4MliMij + 4MljMii

3ei + ej 16x3ixj − (8Mji + 16Mij)x
2
i − 24Miixixj + 4MiiMji + 8MiiMij

Table A.1: Poylnominals pk(x)
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A.2 Gaussain times polynomial

Here one can �nd explicit formulas for integrals of the type Gaussian times
a polynomial of degree ≤ 4. These formulas su�ce to calculate all appearing
complex inner products in the algorithm. In the following let g be a Gaussian
as in de�nition (1.3). Recall the decomposition of the matrix C in C = PQ−1.
With that the Gaussian g reads as

g(x) = exp(
i

2ε
(x − q)TPQ−1

(x − q) +
i

ε
pT (x − q) +

i

ε
ζ) .

Further let k ∈ Nd be a multi index, ϕk the corresponding Hagedorn function as
de�ned in (2.2) and Fεϕk its Fourier transform. Further let ei be the i-th unit
vector and de�ne the following constant

T ∶= exp
iζ
ε (πε)d/4 det(Q)

1/2
(2πε)d/2.

Order 0 and 1:

For polynomials of order 0 and 1 we have

∫
Rd
g(x)dx = TFεϕ0(0)

∫
Rd
xig(x)dx = T

√
ε

2

⎛

⎝

d

∑
l=1
QilF

εϕei(0) +

√
2

ε
qiF

εϕ0(0)
⎞

⎠
.

For higher order of polynomials there are no explicit formulas, but one need
solve an linear equation system. If for some multi index k holds k − el ∉ Nd, we
set Fεϕk−el(0) = 0. Further de�ne k! ∶= k1!⋯kd!.

Order 2:

For polynomials of order 2 we de�ne

A ∶= Q−1

bj ∶=
εT

2

⎛

⎝

d

∑
l=1
Qil

√
el + 1Fεϕej+el(0) +

d

∑
l=1
Qil

√
elF

εϕej−el(0)

+
2

ε
T −1(2πε)d/2

d

∑
l=1
Q−1
jl ql ∫Rd

xig(x)dx +

√
2

ε
qiF

εϕej(0)
⎞

⎠
.

Let now z be the solution of the linear equation system Az = b. Then it holds

zl = ∫
Rd
xixlg(x)dx.
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Order 3:

For polynomials of order 3 we de�ne kij = ei + ej . Further set M = Q−1Q. Then

Aj+(i−1)d,n+(m−1)d ∶=

√
2

ε

4

ε

1
√

2∣kij ∣kij !
Q−1
inQ

−1
jm

bj+(i−1)d ∶= T
⎛

⎝

d

∑
n=1

Qln
√
kij + 1Fεϕkij+en(0) +

d

∑
n=1

Qln
√
kijF

εϕkij−en(0)

+ ql

√
2

ε
F
εϕkij(0) +

√
2

ε

(2πε)d/2
√

2∣kij ∣kij !

4T −1

ε

⎡
⎢
⎢
⎢
⎢
⎣

d

∑
n,m=1

Q−1
inQ

−1
jmqn ∫Rd

xlxmg(x)dx

+
d

∑
n,m=1

Q−1
inQ

−1
jmqm ∫Rd

xlxng(x)dx −
⎛

⎝

d

∑
n,m=1

Q−1
inQ

−1
jmqnqm +

ε

2
Mji

⎞

⎠
∫
Rd
xlg(x)dx

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
.

Let now z be the solution of the linear equation system Az = b. Then it holds

zj+(i−1)d = ∫
Rd
xixjxlg(x)dx.

Order 4:

For polynomials of order 4 we de�ne kijl = ei + ej + el. Further set M = Q−1Q
and C = Q−1

inQ
−1
jmQ

−1
lk for arbitrary i, j, l, n,m, k. Then

Al+(j−1)d+(i−1)d2,n+(m−1)d+(k−1)d2 ∶=
1

√
2∣kijl∣kijl!

√
2

ε

8

ε3/2
C

bl+(j−1)d+(i−1)d2 ∶= T
⎛

⎝

d

∑
n=1

Qµn
√
kijl + 1Fεϕkijl+en(0) + qµ

√
2

ε
F
εϕkijl(0)

+
d

∑
n=1

Qµn
√
kijlF

εϕkijl−en(0) +
(2πε)d/2

√
2∣kijl∣kijl!

√
2

ε

8T −1

ε3/2

⎡
⎢
⎢
⎢
⎢
⎣

d

∑
n,m,k=1

Cqk ∫
Rd
xnxmxµg(x)dx

+
d

∑
n,m,k=1

Cqm ∫
Rd
xnxkxµg(x)dx +

d

∑
n,m,k=1

Cqn ∫
Rd
xkxmxµg(x)dx

−
d

∑
n,m,k=1

Cqmqk ∫
Rd
xnxµg(x)dx −

d

∑
n,m,k=1

Cqmqn ∫
Rd
xkxµg(x)dx

−
d

∑
n,m,k=1

Cqnqk ∫
Rd
xmxµg(x)dx +

d

∑
n,m,k=1

Cqnqmqk ∫
Rd
xµg(x)dx

⎤
⎥
⎥
⎥
⎥
⎦

+
1

√
2∣kijl∣kijl!

√
2

ε

4T −1

ε3/2

⎡
⎢
⎢
⎢
⎢
⎣

Mji

d

∑
n=1

Q−1
ln ∫Rd

xnxµg(x)dx +Mli

d

∑
n=1

Q−1
jn ∫Rd

xnxµg(x)dx

+Mlj

d

∑
n=1

Q−1
in ∫Rd

xnxµg(x)dx −
d

∑
n=1

(Q−1
ln +Q

−1
jn +Q

−1
in)qn ∫Rd

xµg(x)dx

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
.
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Let now z be the solution of the linear equation system Az = b. Then it holds

zl+(j−1)d+(i−1)d2 = ∫
Rd
xixjxlxµg(x)dx.
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A.3 Appearing inner products

A.3.1 Inner products of parameter-derivatives

Here one can �nd a complete list of all the appearing complex inner products
of the orthogonaliation. In the following (qj)l, (pj)l means the l-th component
of qj and pj . The function g(x) is the Gaussian which one get in the same way
as described in (1.30) when multiplying gi(x) and gj(x). All can be obtained
by a straight forward calculation.

⟨
∂u

∂ζi
,
∂u

∂(qj)l
⟩ =

1

ε2
(
d

∑
n=1

−Cjln ∫Rd
xng(x)dx + (qTj Cj − pj)l ∫Rd

g(x)dx)

⟨
∂u

∂(pj)l
,

∂u

∂(qi)m
⟩ =

1

ε2
⎛

⎝

d

∑
n=1

−Cimn ∫Rd
xnxmg(x)dx + (qj)l

d

∑
n=1

Cimn ∫Rd
xng(x)dx

+ (Ciqi − pi)m ∫
Rd
xlg(x)dx − (Ciqi − pi)m(qj)l ∫

Rd
g(x)dx

⎞

⎠

⟨
∂u

∂(qi)l
,

∂u

∂(qj)m
⟩ =

1

ε2
⎛

⎝

d

∑
n=1

d

∑
k=1

CilnC
j
mk ∫Rd

xnxkg(x)dx

− (Cjqj − pj)m
d

∑
n=1

Ciln ∫Rd
xng(x)dx

− (C − iqi − pi)l
d

∑
n=1

Cjmn ∫Rd
xng(x)dx

+ (C − iqi − pi)l(Cjqj − pj)m ∫
Rd
g(x)dx

⎞

⎠

⟨
∂u

∂Cj
,

∂u

∂(qi)m
⟩ =

1

ε2
⎛

⎝

d

∑
l=1

d

∑
r=1

−1

2
Cimr ∫Rd

x2l xrg(x)dx −
1

2
qTj qj

d

∑
l=1
Ciml ∫Rd

xlg(x)dx

+
d

∑
l=1

d

∑
r=1

(qj)lC
i
mr ∫Rd

xrxlg(x)dx +
1

2

d

∑
l=1

(Ciqi − pi)m ∫
Rd
x2l g(x)dx

+
1

2
qTj qj(Ciqi − pi)m ∫Rd

g(x)dx −
d

∑
l=1

(qj)l(Ciqi − pi)m ∫
Rd
xlg(x)dx

⎞

⎠

⟨
∂u

∂ζj
,
∂u

∂(pi)l
⟩ =

1

ε2
⎛

⎝
∫
Rd
xlg(x)dx − (qi)l ∫

Rd
g(x)dx

⎞

⎠

⟨
∂u

∂(pj)l
,

∂u

∂(pi)m
⟩ =

1

ε2
⎛

⎝
∫
Rd
xlxmg(x)dx − (qi)m ∫

Rd
xlg(x)dx − (qj)l ∫

Rd
xmg(x)dx

+ (qi)m(qj)l ∫
Rd
g(x)dx

⎞

⎠
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⟨
∂u

∂Cj
,

∂u

∂(pi)m
⟩ =

1

ε2
⎛

⎝

1

2

d

∑
l=1
∫
Rd
x2l xmg(x)dx −

1

2
(qi)m

d

∑
l=1
∫
Rd
x2l g(x)dx

+
1

2
qTj qj ∫Rd

xmg(x)dx −
d

∑
l=1

(qj)l ∫
Rd
xlxmg(x)dx

+ (qi)m
d

∑
l=1

(qj)l ∫
Rd
xlg(x)dx −

1

2
qTj qj(qi)m ∫Rd

g(x)dx
⎞

⎠

⟨
∂u

∂ζj
,
∂u

∂ζi
⟩ =

1

ε2
∫
Rd
g(x)dx

⟨
∂u

∂Cj
,
∂u

∂ζi
⟩ =

1

ε2
⎛

⎝

1

2

d

∑
l=1
∫
Rd
x2l g(x)dx −

d

∑
l=1

(qj)l ∫
Rd
xlg(x)dx

+
1

2
qTj qj ∫Rd

g(x)dx
⎞

⎠

⟨
∂u

∂Cj
,
∂u

∂Ci
⟩ =

1

ε2
⎛

⎝

1

4

d

∑
l=1

d

∑
r=1
∫
Rd
x2l x

2
rg(x)dx +

1

4
qTi qi

d

∑
l=1
∫
Rd
x2l g(x)dx

−
1

2

d

∑
l=1

d

∑
r=1

(qi)l ∫
Rd
xlx

2
rg(x)dx +

1

4
qTj qj

d

∑
l=1
∫
Rd
x2l g(x)dx

+
1

4
qTj qjq

T
i qi ∫Rd

g(x)dx −
1

2
qTj qj

d

∑
l=1

(qi)l ∫
Rd
xlg(x)dx

−
1

2

d

∑
l=1

d

∑
r=1

(qj)l ∫
Rd
xlx

2
rg(x)dx −

1

2
qTi qi

d

∑
l=1

(qj)l ∫
Rd
xlg(x)dx

+
d

∑
l=1

d

∑
r=1

(qj)l(qi)r ∫
Rd
xlxrg(x)dx

⎞

⎠
.
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A.3.2 Inner products of parameter-derivatives and Hamil-

tonian

Here one can �nd a complete list of all appearing complex inner products of

the form ⟨∂u/∂y,Hu⟩, where y is a parameter of a Gaussian. H = − ε
2

2
∆ + V ,

with V (x) = ∑
d
l=1(1 − cos(xl)). Further m is the number of Gaussians in the

approximation u, i.e. u(x) = ∑
m
k=1 g̃k(x). With gk we mean the multiplication

of gj , the Gaussian which corresponds to the parameter y, and g̃k. Further we
de�ne the abbreviation

Tk ∶= (
1

2
qTk C

2
kqk − p

T
kCkqk +

1

2
∣pk ∣

2
−
iε

2
tr(Ck)) .

Laplacian:

First we calculate all inner product of the form ⟨∂u/∂y,− ε
2

2
∆u⟩. With the upper

abbreviation we have

⟨
∂u

∂(qj)µ
,−
ε2

2
∆u⟩ = −

i

ε

m

∑
k=1

⎛

⎝
(Cjqj − pj)µTk ∫Rd

gk(x)dx −
d

∑
r=1

CjµrTk ∫Rd
xrgk(x)dx

+
d

∑
r=1

(Cjqj − pj)µ(−q
T
k C

2
k + p

T
kCk)r ∫Rd

xrgk(x)dx

−
d

∑
r,s=1

Cjµr(−q
T
k C

2
k + p

T
kCk)s ∫Rd

xrxsgk(x)dx

+
d

∑
r,s=1

1

2
(Cjqj − pj)µ(C

2
k)rs ∫Rd

xrxsgk(x)dx

−
d

∑
l,r,s=1

1

2
Cjµl(C

2
k)rs ∫Rd

xrxsxlgk(x)dx
⎞

⎠

⟨
∂u

∂ζj
,−
ε2

2
∆u⟩ = −

i

ε

m

∑
k=1

⎛

⎝

d

∑
r,s=1

1

2
(C2

k)rs ∫Rd
xrxsgk(x)dx

+
d

∑
r=1

(−qTk C
2
k + p

T
kCk)r ∫Rd

xrgk(x)dx + Tk ∫
Rd
gk(x)dx

⎞

⎠

⟨
∂u

∂(pj)µ
,−
ε2

2
∆u⟩ = −

i

ε

m

∑
k=1

⎛

⎝

d

∑
r,s=1

1

2
(C2

k)rs ∫Rd
xrxsxµgk(x)dx

+
d

∑
r=1

(−qTk C
2
k + p

T
kCk)r ∫Rd

xrxµgk(x)dx + Tk ∫
Rd
xµgk(x)dx

− (qj)µ
d

∑
r=1

(−qTk C
2
k + p

T
kCk)r ∫Rd

xrgk(x)dx

− (qj)µ
d

∑
r,s=1

1

2
(C2

k)rs ∫Rd
xrxsgk(x)dx − (qj)µTk ∫

Rd
gk(x)dx

⎞

⎠
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⟨
∂u

∂Cj
,−
ε2

2
∆u⟩ = −

i

ε

m

∑
k=1

⎛

⎝

1

2
qTj qjTk ∫Rd

gk(x)dx − Tk
d

∑
r=1

(qj)r ∫
Rd
xrgk(x)dx

+
1

2
qTj qj

d

∑
r=1

(−qTk C
2
k + pkCk)r ∫Rd

xrgk(x)dx

+
Tk
2

d

∑
r=1
∫
Rd
x2rgk(x)dx +

1

4
qTj qj

d

∑
r,s=1

(C2
k)rs ∫Rd

xrxsgk(x)dx

−
d

∑
r,s=1

(qj)r(−q
T
k C

2
k + pkCk)s ∫Rd

xrxsgk(x)dx

+
1

2

d

∑
r,s=1

(−qTk C
2
k + pkCk)s ∫Rd

x2rxsgk(x)dx

−
1

2

d

∑
r,s,l=1

(qj)l(C
2
k)rs ∫Rd

xrxsxlgk(x)dx

+
1

4

d

∑
r,s,l=1

(C2
k)rs ∫Rd

xrxsx
2
l gk(x)dx

⎞

⎠
.

Potential:

Now we calculate all inner products of the form ⟨Aµ, V u⟩ = ⟨∂u/∂y, V u⟩. As we
have seen in chapter 1, it holds

⟨Aµ, V u⟩ =
d

∑
j,l=1

⟨Aµ, gj −
1

2
g+jl(x) −

1

2
g−jl(x)⟩,

if we use the same notation and de�nitions as in chapter 1. Therefore it su�ces
to know how to calculate integrals of the form ∫Rd Aµ(x)g̃(x)dx, where g̃ is
an arbitrary Gaussian. De�ne gjl as the multiplication of gj with g̃l. In the
following we have explicit formulas for these kind of integrals.

⟨
∂u

∂ζj
, V u⟩ = −

i

ε

m

∑
l=1
∫
Rd
gjl(x)dx

⟨
∂u

∂(pj)µ
, V u⟩ = −

i

ε

m

∑
l=1

(∫
Rd
xµgjl(x)dx − (qj)µ ∫

Rd
gjl(x)dx)

⟨
∂u

∂(qj)µ
, V u⟩ = −

i

ε

m

∑
l=1

((Cjqj − pj)µ ∫Rd
gjl(x)dx −

d

∑
r=1

Cjµr ∫
Rd
xrgjl(x)dx)

⟨
∂u

∂Cj
, V u⟩ = −

i

ε

m

∑
l=1

(
1

2

d

∑
r=1
∫
Rd
x2rgjl(x)dx −

d

∑
r=1

(qj)r ∫
Rd
xrgjl(x)dx

+
1

2
qTj qj ∫Rd

gjl(x)dx) .

54



Appendix B

List of all Matlab-functions

Name Function

direct_ Orthogonal-
ization

This is the main script of the Code. The user can specify the used
initial data, dimension etc. there.

Normation_u This function normalizes the current wave packet by adjusting the
phase ζj in each Gaussian.

pre_calc_SP Here are all done all pre-calculations. All the complex inner prod-
ucts of the form ⟨Aj ∣Al⟩ and ⟨Aj ∣Hu⟩ are calculated and saved.

HG_to_gauss Calculates the value of the integral ∫ g(x)f(x), where f is a poly-
nomial of low degree, from the Hagedrorn functions with the same
order.

FT_Hagedorn This function calculates the FT of the Hagedorn function ϕk for
a k ∈ Nd via theorem 2.1.

convert_to_real Here the problem is converted form a complex to a real one.
real_Gram_Schmidt Here the presented modi�ed Gram-Schmidt method is applied to

the real problem. Further all real inner products of the form
(qi∣Hu) are calculated.

Parameter If X(y)j is the j-th derivative of X(y), Parameter(j) tells us to
which derivative due to a complex parameter j is related to.

Parameter_real If X(y)j is the j-th derivative of X(y), Parameter_real(j) tells
us to which derivative due to a real parameter j is related to.

ai_ql_real Calculates in a recursive way the real inner products of the form
(ai∣ql), where ai is a derivative with respect to a real parameter
and ql is a orthonormalized function from the real Gram-Schmidt
method.

qi_Hu_real Calculates in a recursive way the real inner products of the form
(qi∣Hu), where ql is a orthonormalized function from the real
Gram-Schmidt method and Hu the Hamiltonian applied to the
approximation u.
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x_i_phi Calculates integrals of the form ∫Rd xiϕ0(x) dx, where ϕ0 is the
0-th Hagedorn function, in the way as presented in chapter 2 and
appendix A.2.

xi_xj_phi_LGS Calculates integrals of the form ∫Rd xixjϕ0(x) dx, where ϕ0 is the
0-th Hagedorn function, in the way as presented in chapter 2 and
appendix A.2.

xi_xj_xl_phi_LGS Calculates integrals of the form ∫Rd xixjxlϕ0(x) dx, where ϕ0 is
the 0-th Hagedorn function, in the way as presented in chapter 2
and appendix A.2.

xi_xj_xk_xl
_phi_LGS

Calculates integrals of the form ∫Rd xixjxkxlϕ0(x) dx, where ϕ0

is the 0-th Hagedorn function, in the way as presented in chapter
2 and appendix A.2.

mult_gauss This function calculates the parameters of a Gaussian g which is
the multiplication of two other Gaussians. Explicit formulas can
be found in chapter 1.

ODE_solver This function solves the equations of motion via the matlab func-
tion 'ODE45'.

init_Lubich Contains the initial data for a single Gaussian as used in [FGL09].
init_rand init_rand(m) generates m arbitrary d-dimensional Gaussians

with the same width matrix Cj = iI.
init_test_1d Generates one or two Gaussians of dimension 1.
init_test_4d Generates one or two Gaussians of dimension 4.

generate_C_matrix This function generates a matrix in Cd×d, which is complex sym-
metric and has positive imaginary part.
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